6POWER, IPv6 and PLC for home automation

Terena 2004
Jordi Palet & Francisco Ortiz
Consulintel
IPv6 & the Home: good “room-mates”

• IPv6 Compelling reason: More Addresses
 – Billions of devices, users, “always-on” technologies

• Main IPv6 Benefits:
 – Expanded addressing capabilities
 – Server-less autoconfiguration (“plug-n-play”) and reconfiguration
 – More efficient and robust mobility mechanisms
 – Built-in, strong IP-layer encryption and authentication
 – Streamlined header format and flow identification
 – Improved support for options / extensions
Typical PLC Network Topology

Each customer site will require a Powerline modem CPE (Customer Premises Equipment).

HE injects signal coming from the backbone.

A high-speed Powerline modem HE (Head End) is installed in the MV/LV transformer.

Home Gateway enables several nodes to connect to a LAN and share the high-speed connection. Efficient LAN to LAN frequency reuse is achieved.

Any other access technologies can use Home Gateways features.

HE | Home Gateway | CPE | XDSL and CATV modems
PLC and WLAN for Broadband

- **PLC Key advantage:**
 - Power wires are already installed in any location where information could be delivered (access).
 - Traffic lights
 - Information panels
 - Metering systems
 - 3G+ base stations!
 - WLAN Access Points!
 - Security, surveillance
 - Vending machines
 - PLC offer today speeds up to 200 Mbps.

- **WLAN**
 - Easy to deploy
 - Today speeds up to 54/108 Mbps.
Next generation applications …

• Every device, even every application, one address!
• End-to-end (and secure end-to-end)
• True Interactive TV
• Intelligent environments
• Example: Intercom (voice or voice&video)
 – Can be easily “upgraded”
 – Can be installed at every place in the home
 – Connectivity with Internet (remote opening/control)
 – Several people using it simultaneously
 – Same device as the computer, PDA, cellular, VoIP phone, etc.
 – Can be used to communicate between neighbors
 – …
UPnP (Universal Plug & Play)

- Enables discovery and control of network devices and services
- Based on open TCP/IP standards: HTTP, XML, SOAP
- Zero-configuration
- Independent of any particular operating system or programming language:
 - No API definition
UPnP (II)

• Defines:
 – How the devices and control point have to be designed
 – The communication protocol between them

• Addressing:
 – Devices and control points get a valid IPv6 address

• Discovery:
 – Multicast Devices advertises and control points searches:
 • FF02::C:1900
UPnP (III)

• Description:
 – The Devices have an XML file that describes:
 • Name, type, manufacturer, a list of services that contain, etc.
 – Control Points obtain it (HTTP)

• Control:
 – SOAP is used to get the status or to invoke actions over the devices

• Event:
 – Control Points can receive a message when the status of a device change

• Presentation:
 – The devices could have an HTML page to facilitate human access to them
6-Plug

• Secure access to the home or industrial devices with IPv6
 – No problems with NATs and private networks!
 – Using proto-41-forwarding to a tunnel broker
• Use port 80 (433 if SSL)
 – No problems with proxies!
• Tomcat 5.0 web server (with IPv6 Support)
• Windows XP, CE, and Linux/BSD platforms
• Java Server Pages (JSP) Technology
• Java 1.5 (with IPv6 Support)
• Siemens UPnP SDK 1.1 (with IPv6 Support)
6-Plug Security

- SSL Support
 - Web server authentication by digital certificate
 - All transactions encrypted and logged
 - Possible client authentication by digital certificate
- Login and password client authentication when no digital certificate used
- UPnP security:
 - Private/public keys architecture
 - Authorization for actions invocations over the devices at home UPnP network
X.10

- X.10 is a control technology that allows the transmission of digital information over the power line wiring.
- The transmitters use zero crossing point of the AC power line to send the messages.
 - Binary 1 is represented by a 1 millisecond burst of 120 kHz
 - Binary 0 by the absence of 120 kHz
- The bandwidth is 50 bps (60 bps at USA).
- Each receiver device has a House Code (A-L) and a Key Code (1-16) that identify itself at the network.
- We can switch on/off any electrical devices (dimming is also possible).
X.10 to UPnP Bridge

• The bridge allows us to present every X.10 device in the UPnP network
• The UPnP Controls Points could execute actions over them and watch their status
X.10 to UPnP Bridge (II)

- When the bridge receives an action invocation from an UPnP Control Point the bridge connects by serial port to the X.10 adapter to send the commands to the devices.
Other Control Technologies

• Other bridges to UPnP are under design
 – EIB (European Installation Bus):
 • Transmission media: Low voltage (24V) cable
 – 9.600 bps
 • Other available medias: Power Line, radio frequency, infrared, …
 • Support up to 65.000 devices
 • API Falcon to access to the EIB network
 – LonWorks:
 • Based on the Echelon Neuron Chip
 • Available with different transmission medias
 – and more in the roadmap

• But … new IPv6 enabled devices available:
 – IPv6 Cameras (LAN & WLAN)
 – IPv6 Set-Top-Boxes (with also interface to X.10 or others)
IPv6, Transition and Coexistence

• Keep dual stack if possible
 – IPv4 with NAT, will be here probably for many years
 – IPv6 end-to-end (including security)
• Use IPv4 to transport IPv6 if no native connectivity available
 – ISPs could not offer native service immediately
 – But IPv6 is still very useful and offers end-to-end
• Not using IPv6 is an opportunity (business) loss
• Old applications revived with IPv6
• IPv6 is not only about addressing but also about INNOVATION
The Demonstration
IPv6-enabled Home Appliances

• There is an incredible market for any kind of IPv6-enabled appliances, with technologies like PLC and WiFi:
 – Cameras
 – Audio
 – Alarm systems
 – Sensors (intrusion, smoke, gas, water, …)
 – Controllers
 – Dimmers
 – Switches
 – Electro-valves
 – Door-locks
 – Temperature
 – Pet readers ;-)

• What about the kitchen and the living room ?
• Ambient Intelligence is HERE !
6POWer: Objectives

- Research native IPv6/IPv4 and related protocols or advanced network services (QoS, security, multicast, mobility, …) support over broadband Power Line.
- Large-scale deployment of very high speed broadband PLC over 45 Mbps!
- Support for emerging technologies: Home automation, VoIPv6, multi-conferencing, audio/video streaming, advanced “next generation” digital set-top-boxes, next generation services (high-speed interactive TV, secure e-commerce, virtual shopping, infotainment and related applications)
- Field Trial and Evaluation, network prototypes, interconnected with other IPv6 trials.
Power Line Communications (PLC) allows transmission of data over power lines. PLC is potentially the network with the deepest capability in the world, since power lines are almost ubiquitous.

IPv6 provides a package of highly scalable enhancements to the Internet compared to the capabilities of the existing IPv4 protocol, which is today only sustained by Network Address Translation (NAT). NAT has unfortunately created unexpected barriers during the massive growth of the Internet, consequently breaking the initial end-to-end communications concept.

However, this massive IPv4 deployment happened mainly in rich countries, creating a digitally divided society. IPv6, associated with other scalable technologies like PLC, is key to redressing the balance and alleviating the digital divide, enabling more people and entire countries to access information and knowledge, which in turn will allow them to benefit from the global economy, and create new knowledge and services.

Background

New access technologies, like PLC, that have been evaluated for some years, have failed to support the legacy Internet paradigms. These technologies now have a new opportunity with IPv6; because IPv6 will give value to their deployment.

Power Line Communications has been around since the 1930's but was never seriously thought of as a medium for communication due to its low speed, low functionality and high deployment cost. However, new modulation techniques supported by recent technological advances have finally enabled this medium to become a realistic and practical medium of communication.

Recently, new technology has led to integrated circuits and modems entering the market, providing high-speeds over power line infrastructure at reasonable and falling costs.

Although several broadband PLC technologies have been successfully deployed, there is no standard yet. Some vendors provide “low-speed” (up to 2 Mbps) data rates using single-carrier technologies (GMSK, COCA). Some technologies are based on multicarrier modulations (OFDM) and offer higher data rates, notably 46 Mbps OFDM PLC chips, which is the highest data rate available at this time.

In December 2002, at least one PLC technology vendor announced that during the second half of 2003, a new generation of broadband PLC technology, providing 200 Mbps of physical layer data rate would be available as a commercial product.

Technical issues of PLC

The main advantage of PLC over other technologies is that no new cabling is required, as all the cables are already there. Every building, be it offices, apartments or houses, has the network already installed. This permits a computer,
Thanks!

Contact:

- Jordi Palet (Consulintel): jordi.palet@consulintel.es

- Madrid 2004 Global IPv6 Summit, soon more info at:
 http://www.ipv6-es.com

- 6POWER Project Coordinators
 - Jordi Palet Martínez (Consulintel): jordi.palet@consulintel.es
 - Chano Gómez (DS2): chano.gomez@ds2.es