IPv6 and the Grid
Work in Progress

S. Bhatti, P. Kirstein, S. Venaas, P. O’Hanlon and S. Jiang
University College London and UNINETT
Plan

• Why is IPv6 important for the Grid
• What has been our progress in porting Globus to the Grid
The Nature of the Grid

• Grid is … a second chance to do distributed computing! 😊

• Many users:
 – Pure and Applied Sciences
 – Distributed Processing, High Performance
 – e.g. High Energy Physics, Bio-informatics

• Lots of investment (EU, national)

• Highly distributed - networking is vital!
 – It must track the best networking available
Why bother with IPv6 for grid

- All better IPv4 features will come into later IPv6 implementations – but in a more integrated way
 - More likely to be standardly available in IPv4
 - Availability and functionality of implementations variable

- Examples of the above are already
 - Mobility support, security support, multicast and reconfiguration

- Large address space is used in a far better way
 - 128 bit addresses allows globally unique device addresses
 - Even many addresses per device allows tailoring of device
Advantages of IPv6 Addresses

• Will use 64 bit unique to device, 64 bit for network
 – Allows separation of addressing and routing
 – Can bind certificates to device address even when mobile
 • May allow convergence with UMTS methods of security

• Removes the need for NATs
 – Allows better end-end security
 • A fundamental problem in the grid environment
 – Removes artificial separation of client and servers
 • Fundamental to grid
 – Application protocols can rely on unique correlation of addresses and devices
 – More freedom in design of application protocols
Specific Instance of IPv6 Addressing

- **IPv6 Addressing and routing**
 - Global addresses for all end-systems (64 bits for the end systems)
 - Better addressing/routing scalability for all

- **Mobile IP support in Basic Standard**
 - Simplified addressing (mobile address has 64-bit prefix)
 - Simplified routing
 - Better than MIPv4
 - Inbuilt Security for Updates

- **Multi-homing feasible, but still being defined**
IPv6 Configuration & Performance

• Intrinsic support for Auto-configuration
 – Stateless (link-local, site-local) and state-full
 – Plug and Play
 – Neighbour discovery

• Performance potentially much better
 – Simplified header and header processing
 – Hardware assist - just coming in commercially
Security & Group communications

• Security in Basic Standard
 – IPsec: transport-level and tunnelling
 – AH: authentication
 – ESP: privacy

• Multicast in Basic Standard
 – Cleaner multicast address usage

• Anycast
 – Still being refined
Globus IPv6 Port
Work in Progress

Where are we at UCL in making the main Grid tool, Globus, IPv6-enabled
Making Globus GT2 IPv6 Enabled

• GT2 was the previous release
• Mainly written in C
• Had specific routines using calls to IP in Globus I/O (GIO)
 – Most modifications were in GIO
 – Worked on TCP/IP and UDP/IP porting
 – UoS started TCP/IP, UCL continued both IP ports
• Fairly straightforward to make either IPv4 or IPv6
 – Problem was to make it dual stack
Current Globus GT3 Activity

• GT3 is current release, mainly written in Java
• Initially tested with JDK1.3 (not IPv6 enabled)
• Moved over easily to JDK1.4 (IPv6 enabled)
 – Great advantage that most code was Java
• In following slides things done are underlined
Different Aspects of Activity

• **Java SDK** – Ensure working with JDK1.4
 – **Tested mainly in IPv4 mode**
 – **Only places where IP is called need testing for IPv6**

• **PostgreSQL** – Installed IPv6 patch

• **Tomcat** – Use lightweight version, with JDK1.4

• **OGSA Relevant Network Communication Protocols**
 – **Probably needs little work**
 – **Need to know which parts are IPv6 sensitive**
Other Activities

- GT3 Stand-alone Web Container
 - Used only for tests, but may need upgrade
- GT3 Server
 - Needs some work on where IPv4 calls are made
- GT3 Client
 - Needs some work on where IPv4 calls are made
- Tracking Globus changes
Non-Web Services

- OGSA is web based – little problem if correct initialisation JDK parameters are used
- Some other components not yet web based
 - Need more detailed analysis to identify changes
 - Grid FTP is an example of such a service
- The services needed are dependent on method of usage for specific applications
OGSA Activity

• GT3 is an implementation of the OGSA architecture
 – Includes sample OGSA services in distribution

• Will need to write own services
 – Initially just to exercise system
 – Later to make use of IPv6-specific facilities

• Have some high level media gateways
 – May make these operate in Globus environment
Longer Term Aims

• Making Globus IPv6-enabled is only a beginning
• Aim is then to use the underlying services that are thereby enabled in a uniform way
 – Though transition services must be deployed at first
 – Will require considerable thought to do seemlessly
• It is an IETF assumption that the following services will be universally available
 – VPN/IPsec support, mobility, multicast, QoS, IPv6 autoconfiguration and addressing
• Nevertheless it is not clear that all will be fully deployed
Full availability of IPv6 will allow provision of better Grid services